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Machine Learning

I Unsupervised learning: given data x and labels y , does
there exists a smooth f (x) = y (regression)? Quantitative or
qualitative data (classification).

I Uniform function approximator Guarantees convergence?

I Regression is done by minimizing a loss function
L(µ) := 1

n

∑
n ||g(xn, µ)− yn||, via adjusting parameters µ:

µ̄ = argminµL(µ) (1)

I Done via backpropagation. Could try to use Newton’s
method to move downhill, but matrix inversion too expensive.

I Not smooth enough, so use gradient descent (still expensive
for large n)

I Use stochastic gradient descent
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Observations Made in the Literature

Stochastic gradient descent works better than it should!
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Why does stochastic gradient descent work so well? In
high-dimensions:
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Separability & Classification
I For the classification problem, the hyperplane is the solution

found by machine learning, volume of minimum given by h.
I Other fit is too sensitive and has less flexibility (smaller

volume in parameter space)
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Hard Classification Problem

We do not typically see these kinds of problems. High-
dimensional “natural” data is “easily” separable.
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Concentration on n-Sphere

Fact: The uniform measure clusters about any equator.

I Uniform measure on n-sphere σn.

I Define spherical cap A, where σn(A) = 1/2. This is extremal
set of the isoperimetric inequality, which means that it is a
hemisphere of the n-sphere.

I

Ar := {x ∈ Sn : d(x ,A) < r} (2)

where d(x , ·) is the Riemannian distance on the n-sphere.

I Then,

1− σn(Ar ) ≤ e−(n−1)r2/2 (3)

Mass collects around any equator, “equators are large”.
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Approximate Orthogonality

Fact: Randomly sampled vectors on the n-sphere are approx-
imately orthogonal for large n.

I Take a randomly sampled point x ∈ Sn, and define an axis in
this direction. I.e., define an orthonormal basis, where in this
basis x = (1, 0, 0) ∈ Rn+1, so x is at the north pole.

I Now, sample y randomly from Sn. With high probability, it
will be located within a distance 1/

√
n of the equator (at zero

latitude). Thus, with high probability it will be approximately
orthogonal to x at the north pole.
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Upshot: Approximately orthogonal data points are easy to
separate (classify) in finite vector spaces.
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Q: Why do we care about points randomly chosen on the sphere?

A: It is a good model for randomness in high dimensions.
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Gaussians in High-Dimensions
The normalized n-dimensional Gaussian:

p(|x|) =
1

(2π)
n
2

e
−|x|2

2 (4)

Gaussian Annulus Theorem:
For a n-dimensional unit variance spherical
Gaussian, for any positive real number
β ≤
√
n, all but at most 3e−cβ2

of the mass
lies within the annulus

√
n − β ≤ r ≤

√
n + β,

where c is a fixed positive constant.

P(r−ε ≤ |x| ≤ r+ε) =
nπ

n
2

Γ
(
n
2 + 1

) ∫
|ρ−r |<ε

p(ρ)ρn−1dρ

(5)
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Noisy data is easily separable in high dimensions!

This is perhaps why backpropragation via stochastic gradient
descent works well on “natural” data.
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Questions?
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Resources & Future Topics

I “Pattern Recognition and Machine Learning”
Christopher M. Bishop

I “The Concentration of Measure Phenomenon” Michel
Ledoux

I Machine learning talks given by applied mathematicians

Future Topics:

1. Machine learning as function regression, conditional
expectation (Binan ?)

2. Adversarial attacks

3. GAN, WGAN, etc.

4. Data Augmentation

5. Further Information Geometry, High-Dim. Information (Axel)


