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Machine Learning

>

Unsupervised learning: given data x and labels y, does
there exists a smooth f(x) = y (regression)? Quantitative or
qualitative data (classification).

Uniform function approximator Guarantees convergence?

Regression is done by minimizing a loss function
L(p) =13, Ilg(xn, 1) — yul|, via adjusting parameters s:

fi = argmin,, L(y) (1)
Done via backpropagation. Could try to use Newton’s
method to move downhill, but matrix inversion too expensive.

Not smooth enough, so use gradient descent (still expensive
for large n)

Use stochastic gradient descent
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Observations Made in the Literature

Stochastic gradient descent works better than it should!
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Why does stochastic gradient descent work so well? In
high-dimensions:

The minimum

A qualitativel
we want q 14

worse fit for
prediction
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Separability & Classification

» For the classification problem, the hyperplane is the solution
found by machine learning, volume of minimum given by h.

» Other fit is too sensitive and has less flexibility (smaller
volume in parameter space)
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Hard Classification Problem

dimensional “natural” data is “easily” separable.

We do not typically see these kinds of problems.

High-
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Concentration on n-Sphere

Fact: The uniform measure clusters about any equator.

» Uniform measure on n-sphere o,.

» Define spherical cap A, where 0,(A) = 1/2. This is extremal
set of the isoperimetric inequality, which means that it is a
hemisphere of the n-sphere.

| 2
Ari={xeS":d(x,A) <r} (2)
where d(x,-) is the Riemannian distance on the n-sphere.
» Then,
1— on(A,) < e (17172 (3)

Mass collects around any equator, “equators are large”.
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Approximate Orthogonality

Fact: Randomly sampled vectors on the n-sphere are approx-
imately orthogonal for large n.

» Take a randomly sampled point x € S§”, and define an axis in
this direction. l.e., define an orthonormal basis, where in this
basis x = (1,0,0) € R"*1, so x is at the north pole.

» Now, sample y randomly from S". With high probability, it
will be located within a distance 1/+/n of the equator (at zero
latitude). Thus, with high probability it will be approximately
orthogonal to x at the north pole.
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Upshot: Approximately orthogonal data points are easy to
separate (classify) in finite vector spaces
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Q: Why do we care about points randomly chosen on the sphere?

A: It is a good model for randomness in high dimensions.
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Gaussians in High-Dimensions

The normalized n-dimensional Gaussian:
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P = et (@

Gaussian Annulus Theorem:

For a n-dimensional unit variance spherical
Gaussian, for any positive real number

B < /n, all but at most 3e~<#” of the mass
lies within the annulus \/n— 3 <r <./n+ 8,
where c is a fixed positive constant.
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Noisy data is easily separable in high dimensions!

This is perhaps why backpropragation via stochastic gradient
descent works well on “natural” data.
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Questions?
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Resources & Future Topics

> “Pattern Recognition and Machine Learning”
Christopher M. Bishop

» “The Concentration of Measure Phenomenon” Michel
Ledoux

» Machine learning talks given by applied mathematicians

Future Topics:
1. Machine learning as function regression, conditional
expectation (Binan 7)
Adversarial attacks
GAN, WGAN, etc.
Data Augmentation
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Further Information Geometry, High-Dim. Information (Axel)



