Machine Learning Talk I Why does stochastic gradient descent work so well?

Axel G. R. Turnquist

NJIT Department of Mathematical Sciences

September 25, 2020

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Machine Learning

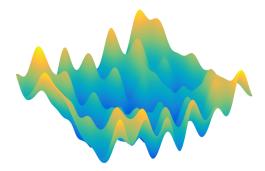
- ► Unsupervised learning: given data x and labels y, does there exists a smooth f(x) = y (regression)? Quantitative or qualitative data (classification).
- Uniform function approximator Guarantees convergence?
- Regression is done by minimizing a **loss function** $L(\mu) := \frac{1}{n} \sum_{n} ||g(x_n, \mu) - y_n||, \text{ via adjusting parameters } \mu:$

$$\bar{\mu} = \operatorname{argmin}_{\mu} \mathcal{L}(\mu)$$
 (1)

- Done via backpropagation. Could try to use Newton's method to move downhill, but matrix inversion too expensive.
- Not smooth enough, so use gradient descent (still expensive for large n)
- Use stochastic gradient descent

Observations Made in the Literature

Stochastic gradient descent works better than it should!



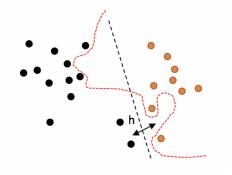
▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Why does stochastic gradient descent work so well? In high-dimensions:

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Separability & Classification

- ► For the classification problem, the hyperplane is the solution found by machine learning, volume of minimum given by *h*.
- Other fit is too sensitive and has less flexibility (smaller volume in parameter space)



Hard Classification Problem

We do not typically see these kinds of problems. Highdimensional "natural" data is "easily" separable.

Concentration on *n*-Sphere

Fact: The uniform measure clusters about any equator.

- Uniform measure on *n*-sphere σ_n .
- Define spherical cap A, where $\sigma_n(A) = 1/2$. This is extremal set of the **isoperimetric inequality**, which means that it is a hemisphere of the *n*-sphere.

$$A_r := \{ x \in \mathbb{S}^n : d(x, A) < r \}$$
(2)

where $d(x, \cdot)$ is the Riemannian distance on the *n*-sphere. Then,

$$1 - \sigma_n(A_r) \le e^{-(n-1)r^2/2}$$
 (3)

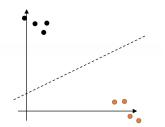
Mass collects around any equator, "equators are large".

Approximate Orthogonality

Fact: Randomly sampled vectors on the *n*-sphere are approximately orthogonal for large *n*.

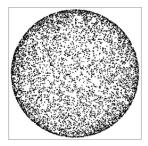
- ► Take a randomly sampled point x ∈ Sⁿ, and define an axis in this direction. I.e., define an orthonormal basis, where in this basis x = (1,0,0) ∈ ℝⁿ⁺¹, so x is at the north pole.
- Now, sample y randomly from Sⁿ. With high probability, it will be located within a distance 1/√n of the equator (at zero latitude). Thus, with high probability it will be approximately orthogonal to x at the north pole.

Upshot: Approximately orthogonal data points are easy to separate (classify) in finite vector spaces.



▲□▶ ▲圖▶ ▲臣▶ ▲臣▶ ―臣 … のへで

Q: Why do we care about points randomly chosen on the sphere?



A: It is a good model for randomness in high dimensions.

Gaussians in High-Dimensions

The normalized *n*-dimensional Gaussian:

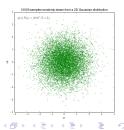
$$p(|\mathbf{x}|) = \frac{1}{(2\pi)^{\frac{n}{2}}} e^{\frac{-|\mathbf{x}|^2}{2}}$$
(4)

Gaussian Annulus Theorem:

For a *n*-dimensional unit variance spherical Gaussian, for any positive real number $\beta \leq \sqrt{n}$, all but at most $3e^{-c\beta^2}$ of the mass lies within the annulus $\sqrt{n} - \beta \leq r \leq \sqrt{n} + \beta$, where *c* is a fixed positive constant.

$$P(r-\epsilon \le |\mathbf{x}| \le r+\epsilon) = \frac{n\pi^{\frac{n}{2}}}{\Gamma\left(\frac{n}{2}+1\right)} \int_{|\rho-r|<\epsilon} p(\rho)\rho^{n-1}d\rho$$
(5)





Noisy data is easily separable in high dimensions!

This is perhaps why backpropragation via stochastic gradient descent works well on "natural" data.

(日) (同) (日) (日)

Beamer

Questions?

(ロ)、(型)、(E)、(E)、 E) の(の)

Resources & Future Topics

- "Pattern Recognition and Machine Learning" Christopher M. Bishop
- "The Concentration of Measure Phenomenon" Michel Ledoux
- Machine learning talks given by applied mathematicians

Future Topics:

- 1. Machine learning as function regression, conditional expectation (*Binan* ?)
- 2. Adversarial attacks
- 3. GAN, WGAN, etc.
- 4. Data Augmentation
- 5. Further Information Geometry, High-Dim. Information (Axel)